Shammunity

Powered by 🌱Roam Garden

6.1 非线性因果关系

简单的问题往往遵循直接的因果关系。当病人有一系列与流感密切相关的症状时,医生可能会从可观察到的变量中推断出有一个不可见的变量——流感病毒。治疗这个潜在的变量,症状就会消失。

Scott Alexander 观察到,他的精神病学同行同样试图将一组相关症状归因于一个潜在变量,例如抑郁症。【6】然而,抑郁症引起的症状-例如睡眠障碍、疲劳、内疚——也会对彼此和紊乱本身产生因果影响。这种复杂的关系网,可能包括反馈回路,并不遵循线性因果关系的路径。对于这种性质的复杂问题,节点网络是一个更精确的模型:

Nuijten、Deserno、Cramer 和 Borsboom 建立的一个抑郁症(MD)和广泛性焦虑症(GAD)模型。【7】这些疾病大致映射到一系列症状上,这些症状经常在一起发生并相互加强,但在这些症状之间没有清晰的“亮线”。

即使从表面价值来看,节点网络也为解决问题提供了一种直观的帮助——鸟瞰各种元素之间的联系。这可能有助于识别不同形态或群集,这些形态或群集可能是违反直觉的,或者当研究微观结构时很难看到整体面貌 。

Referenced in