6.2 贝叶斯推理
将贝叶斯推理应用于知识图,可使其成为概率估算、假设评测和决策制定的强大工具。贝叶斯定理是一个概率定律,它告诉我们,当学习一个新的事实或获得新的证据时,我们应该在多大程度上改变我们对某事的看法。该定理在下列方程式中陈述:
其中A是关注的命题,B是观察到的证据, P(A) 和 P(B) 是先验概率,P(A|B) 是 A 的后验概率。
假设一个医生有一个病人,因为他属于一个高危人群,所以他想知道携带一种潜在病毒的概率, 这是等式左边的“关注命题”。先前的数据表明,总人口中有 4% 是病毒携带者,因此 。B是观察到的证据, 即 32% 的总人口是高危人群,。医生知道,在携带该病毒的患者中,80% 属于高危人群:.
医生应用了贝叶斯定理:
她的病人只有十分之一的机会成为病毒携带者,这可能低于常人的预期,因为几乎所有的携带者都是高危人群。
虽然这是一个简单的计算,但贝叶斯推理的优势在于可以将看似无法解决的问题分解成小块。即使没有可用的数据,连续的多层估算仍然可以对各种结果的置信水平提供有益的改进。通过将此框架加入到节点之间定义的关系中,网络中任何一点的权重的修改将自动更新到整个知识图中。
贝叶斯概率也为决策制定提供了一个框架。通过评估各种选择的成本和取舍,用户可以计算出哪条路径提供了最高的期望值。同样,即使权重只是个人喜好的简单估计,决策的质量也可以通过多层的正反方论据来改进。评估矩阵允许我们将大量信息集成到最终决策中,而不是默认使用某种简单的推断法。